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1. ~ODU~ION 
PAPER 3 of the present series [I] contains all the exact 
solutions to the “similar” b-equation available in mid- 
1960. Since that time a few more solutions have become 
available, namely those of Acrivos [2] and Sparrow and 
Gregg [3]. The purpose of the present note is to express 
these new solutions in the terms used in [l] and other 
papers of the series. Since the notation used is identical 
with that employed throughout the series, and since the 
present note can be regarded as an appendix to Paper 
3 111, no separate notation list will be provided here. 

2 THR ~OLA~ON FORMULA 

resulting asymptotic expression may be written in our 
notation as: 

Since values of (b/,/B) for values of B close to zero are 
usually known, Acrivos derived and recommended an 
interpolation formula, valid for - 1 < B < 0, giving 
(b’,/B) in terms of the values of this quantity for B = - 1 
and B = 0. This formula, in the present notation, is: 

OF ACRIVOS We have used equation (2), together with the asymp- 
Acrivos [2] considered the solution of the “similar” totic formula (1) and the values of (b’,/B) given in Paper 

b-equation when the driving force B tends to -1. His 3 of this series [l], to construct Figs. 1, 2 and 3. 

FIG. 1. u-ljs~~~J~) versus B for D = 0.7 and various values of 8. Full lmes are obtained from Acrivos’ 
int%polation formula; broken lines (or points) are exact sohrtions extracted from Paper 3 [I]. 
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FIG. 2. ~-.“3(~3/~) versus B for /3 =z 0 (the flat plate) and various v&es of 0. Ful! lines are obtained from 
Acrivos’ interpolation formula; broken lines are exact solutions extracted from Paper 3 [I]. 

Figure 3 contains values of o-‘;“(b’JB) plotted against 
B for a o-value of 0.7 and various values of 8. The exact 
solutions extracted from Paper 3 are represented by 
broken fines or individual points; the fu.li lines represent 
the Acrivos interpolation formula. It nlrty be concluded 
that: (i) the Acrivos formula agrees well (within 5 per 
cent) with the exact solution for the one case in which 
comparison is possible (fi = 0); (ii) the curves based on 
the Acrivos formuIa join fairly smoothly but exhibit an 
inflexion near B = 0 which is absent from the exact 
solutions: (iii) the Acrivos formula permits curves to be 
easily plotted in previously uncharted areas. 

It should be noted that the Acrivos formula is both 
more accurate when B tends to -- 1, and easier to use, 
than the method presented by Spalding and Evans [I] 
for obtaining new solutions to the “similar” b-equation. 
Of course, it is restricted to negative values of 3. 

Figure 2 contains values of ~-1’3{~~/~) valid for 
various D and B and for fi = 0 (the fiat plate). The exact 
solutions extracted from Paper 3 are ‘represented by 
broken lines; the full lines are based on the Acrivos 
formula. It is seen that for v values in the ne~~bourhood 
of 1 the agreement is still fairIy good. For larger CT values, 
comparison with the exact solution for a = co shows 
that the Acrivos ~terpolation formula is no longer 
reliable. Fig. 3 contains the corresponding curves for 

/3 =: 1 (plane stagnation point); it seems that similar 
conclusions can be drawn. 

3. THE DATA OF SPARROW AND GREGG 131 

These authors considered the laminar flow on a 
rotating disk with a fluid of Prandtl~Schln~dt number 
equal to 0.7. Since this aerodynamic situation has not 
previously been considered in the present series, it is inter- 
esting to cast the new results in the form used in the series 
so that similarities and differences can be perceived. 

Figure 4 contains the results as a curve of u2’3~~/(@)tla 
versus B. Here the only new symbol is Q which stands for 
the angular velocity of the disk (radians/hour); it takes 
the place of (l~~)(d~~~d~) in the ordinates of Figs. 1, 2 
and 3 for which it witf be remembered that: 

Inspection of Fig. 4 shows that the curve has a form 
similar to that for other known solutions: the mass- 
transfer conductance falls with increasing 3, and rises 
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FIG. 3. o-“P@‘,/B) versus B for fi = 1 (plane stagnation point) and various values of 0. Full fines are obtained 
from Acrivos’ interpolation formula: broken lines or jndividual points are exact solutions extracted from 

Paper 3 El]. 
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FIG. 4. uz&&+Q)“‘* versus B for a rotating disk for various s values. 
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with falling B, at roughly the same rate as has been found Hartnett is that they also obtained solutions for cases in 
to hold for other laminar flows. which, though B was uniform along the surface. PC: was 

Also included on Fig. 4 is a curve valid for infinite not. 
values of IJ. This case was not considered by Sparrow 
and Gregg, but has been solved by us, using the methods REFERENCES 
of Paper 3; it is included for comparison. It will be seen 1. D. B. SPALDING and H. L. EVANS. Mass transfer 
that the role of the Prandtl/Schmidt number in modifying 
the ordinate is similar for a rotating disk to that which it 

through laminar boundary layers-3. “Similar” solu- 
tions of the b-eauation. Znt. J. Heat Mass Transfk, 

nlavs in the different aerodynamic flow natterns dis- 2, 314-341 (1961 j. 
cussed in Paper 3. 2. 

A few extra points are available on the line B = 0; 
these have been deduced from solutions presented by 
Millsaps and Pohlhausen [4] and Sparrow and Gregg [5] 3. 
as quoted by Kreith, Taylor and Chong [6]. 

4. 
4. OTHER NEW SOLUTIONS 

Koh and Hartnett [7] have recently published solutions 
for negative B, /3 = 0, + and 1, and a u-value of 0.73. 5. 
In translating these results into the present form, we have 
found: (i) that the necessity to read from small-scale 
diagrams leads to considerable uncertainty in the location 
of the corresponding lines on a plot such as that of Fig. 1; 6. 
(ii) that the Koh-Hartnett solutions deviate systematically 
and considerably as B + - 1 from the asymptotically 
correct solution of Acrivos. For these reasons, we have 7. 
not reproduced any of the Koh-Hartnett solutions in the 
present note. 

The most interesting feature of the work of Koh and 
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THE paper “On the regularities of composite heat 
transfer” by Konakov, appearing in the March 1961 
issue of the Journal, is in my opinion quite misleading 
in suggesting that combined conduction and radiation in 
absorbing-emitting-conducting bodies may be so treated 
as to obtain a simple explicit solution of the problem 
which is valid over the full range of variation in body 
dimensions-measured in mean free paths. Konakov 
recommends equations purporting to give the flux from 
hot to cold wall due to radiation and conduction acting 
together, for the three cases of a diathermanous medium 
in steady state between hot and cold parallel plates, 
between concentric cylinders or between concentric 
spheres. His recommendations for parallel walls are 
easy to test, since several authors have treated that case 
rigorously. Fig. 1 (from a lecture “Some Problems in 
Radiative Transport” presented by the present author at 
the International Heat Transfer Conference, Boulder, 

Colorado, August 1961) shows the Konakov recom- 
mendations, heavy lines, for comparison with the rigorous 
solution, light line. The graph adequately supports the 
generalization that radiative flux is expressible as a 
diffusion process D,(dQ/dx) only where d+jdx is constant 
for several mean free paths on either side of the plane of 
interest. Here D, is the diffusivity of photons and 4 is the 
radiation density of local space = 4Elc; E = oT4; 
c = velocitv of light. Konakov does distinguish between 
molecular temperature T and radiation temperature T,, 
but the equations he finally recommends do not permit 
the distinction. It is clear on physical grounds that when 
KL is small there is no dodging the solution of an integral 
equation or its equivalent. 

The Konakov analysis also makes use of what the 
present author believes is an incorrect value of D,, 
namely cl,/4 instead of c1,/3, where 1, is the mean free 
path of a photon or l/K (K is the absorption coefficient). 


